Skip to content

Technical Engineering Specifications

Ocean-Based sCO2 Cooling System for 100 MW Data Center

Document ID: CCNL-TES-2024-01 | Version: 1.1 | Date: December 2025


1. Executive Summary

This document provides detailed engineering specifications for a closed-loop supercritical CO2 (sCO2) ocean cooling system designed to reject 100 MW of thermal load from a hyperscale data center. The system leverages the cold waters of the Labrador Current (2-4°C year-round) to achieve passive heat rejection with minimal pumping energy.

Key Design Parameters: - Thermal capacity: 100 MW (341 MMBTU/hr) - Working fluid: Supercritical CO2 - Operating pressure: 80-100 bar - Ocean loop length: 8-10 km - Target PUE contribution: <0.05 (cooling only)


2. Thermodynamic Fundamentals

2.1 Supercritical CO2 Properties

Critical Point: - Critical Temperature (Tc): 31.1°C (304.13 K) - Critical Pressure (Pc): 73.8 bar (7.38 MPa) - Critical Density: 467.6 kg/m³

Operating Conditions (Design Point: 80 bar, 35°C):

Property Value Units Comparison to Water
Density 450-700 kg/m³ 45-70% of water
Dynamic Viscosity 0.03-0.08 mPa·s 10-30x lower
Thermal Conductivity 0.05-0.08 W/m·K 8-13% of water
Specific Heat (Cp) 2.5-8.0 kJ/kg·K Variable near Tc
Prandtl Number 1.5-3.0 - Lower than water

2.2 Heat Transfer Advantage

The heat transfer coefficient for sCO2 near the critical point can be 2-3x higher than water due to:

  1. Low viscosity - Enables higher Reynolds numbers at same flow rate
  2. Property variation - Cp spikes near pseudo-critical temperature
  3. Density changes - Drives natural convection enhancement

Nusselt Correlation for sCO2:

Nu = 0.023 × Re^0.8 × Pr^0.4 × (ρw/ρb)^0.3 × (Cp_avg/Cp_b)^n

Where: - Re = Reynolds number (typically 10^5 - 10^6) - Pr = Prandtl number - ρw/ρb = wall-to-bulk density ratio - n = 0.4 for heating, 0.3 for cooling

Calculated Heat Transfer Coefficients:

Condition h (W/m²·K) Notes
Water in turbulent flow 5,000-8,000 Baseline
sCO2 at 80 bar, 35°C 12,000-18,000 Near pseudo-critical
sCO2 at 100 bar, 25°C 8,000-12,000 Subcritical region

3. System Architecture

3.1 Overall System Schematic

┌─────────────────────────────────────────────────────────────────┐
│                     DATA CENTER (100 MW IT)                      │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌──────────┐        │
│  │ Server   │  │ Server   │  │ Server   │  │ Server   │  ...   │
│  │ Hall A   │  │ Hall B   │  │ Hall C   │  │ Hall D   │        │
│  │ (25 MW)  │  │ (25 MW)  │  │ (25 MW)  │  │ (25 MW)  │        │
│  └────┬─────┘  └────┬─────┘  └────┬─────┘  └────┬─────┘        │
│       │             │             │             │               │
│       └─────────────┴──────┬──────┴─────────────┘               │
│                            │                                    │
│                    ┌───────┴───────┐                            │
│                    │  PRIMARY HX   │ ← Liquid-to-sCO2           │
│                    │  (Titanium)   │                            │
│                    └───────┬───────┘                            │
└────────────────────────────┼────────────────────────────────────┘
              ┌──────────────┼──────────────┐
              │              │              │
        ┌─────┴─────┐  ┌─────┴─────┐  ┌─────┴─────┐
        │  PUMP 1   │  │  PUMP 2   │  │  PUMP 3   │  (N+1 Redundancy)
        │  (Duty)   │  │  (Duty)   │  │ (Standby) │
        └─────┬─────┘  └─────┬─────┘  └─────┬─────┘
              │              │              │
              └──────────────┼──────────────┘
                    ┌────────┴────────┐
                    │  MANIFOLD &     │
                    │  CONTROL VALVE  │
                    └────────┬────────┘
         ════════════════════╪════════════════════  SHORE LINE
                    ┌────────┴────────┐
                    │  SHORE CROSSING │
                    │  (HDD Conduit)  │
                    └────────┬────────┘
    ─────────────────────────┼─────────────────────  SEABED
              ┌──────────────┴──────────────┐
              │                             │
        ┌─────┴─────┐                 ┌─────┴─────┐
        │  SUPPLY   │                 │  RETURN   │
        │  (Hot)    │                 │  (Cold)   │
        │  35-40°C  │                 │  8-12°C   │
        └─────┬─────┘                 └─────┬─────┘
              │                             │
              │    ┌─────────────────┐      │
              │    │                 │      │
              └────┤  OCEAN LOOP     ├──────┘
                   │  (8-10 km)      │
                   │  2-4°C seawater │
                   └─────────────────┘

3.2 System Components

Component Quantity Function
Primary Heat Exchangers 4 Server liquid to sCO2
sCO2 Circulation Pumps 3 (2+1) Drive sCO2 flow
Subsea Pipeline (Supply) 5 km Hot sCO2 to ocean
Subsea Pipeline (Return) 5 km Cold sCO2 from ocean
Ocean Heat Exchanger 8-10 km Heat rejection to seawater
Expansion Tank 2 Pressure/inventory control
Control System 1 Automation and monitoring

4. Thermal Design Calculations

4.1 Heat Load Analysis

Data Center Thermal Load:

Parameter Value Notes
IT Load 100 MW Servers, storage, network
PUE Target 1.05 Industry-leading
Total Facility Load 105 MW IT + overhead
Cooling Load 100 MW ~95% rejected via sCO2
Auxiliary Cooling 5 MW UPS, lighting, etc. (local)

Heat Balance:

Q_total = Q_servers + Q_storage + Q_network + Q_lighting + Q_UPS
Q_total = 85 MW + 8 MW + 5 MW + 1 MW + 1 MW = 100 MW

Q_cooling = 100 MW = 100,000 kW = 341.2 MMBTU/hr

4.2 sCO2 Flow Rate Calculation

Design Conditions: - Inlet temperature (from servers): 40°C - Outlet temperature (from ocean): 10°C - Temperature differential: ΔT = 30°C - Average specific heat: Cp = 3.0 kJ/kg·K (at 85 bar)

Mass Flow Rate:

Q = ṁ × Cp × ΔT

ṁ = Q / (Cp × ΔT)
ṁ = 100,000 kW / (3.0 kJ/kg·K × 30 K)
ṁ = 1,111 kg/s

Volume Flow Rate:

At 85 bar, 25°C: ρ = 700 kg/m³

V̇ = ṁ / ρ = 1,111 / 700 = 1.59 m³/s = 5,724 m³/hr

4.3 Ocean Heat Exchanger Sizing

Heat Transfer to Seawater:

Design basis: - Seawater temperature: 3°C (annual average) - sCO2 inlet temperature: 40°C - sCO2 outlet temperature: 10°C - Log Mean Temperature Difference (LMTD):

LMTD = (ΔT1 - ΔT2) / ln(ΔT1/ΔT2)
     = ((40-3) - (10-3)) / ln(37/7)
     = (37 - 7) / ln(5.29)
     = 30 / 1.67
     = 18.0°C

Overall Heat Transfer Coefficient (U):

For pipe-in-seawater configuration with steel-core finned pipe (see Section 5.3): - sCO2 side: hi = 12,000 W/m²·K - Pipe wall (carbon steel): k = 50 W/m·K, t = 25 mm - External fins: 3x surface area enhancement - Seawater side (natural convection): ho = 500 W/m²·K

Baseline calculation (bare steel pipe):

1/U = 1/hi + t/k + 1/ho
1/U = 1/12,000 + 0.025/50 + 1/500
1/U = 0.000083 + 0.0005 + 0.002
1/U = 0.00258
U_bare = 387 W/m²·K

However, the seawater-side convection (ho = 500 W/m²·K) dominates the thermal resistance. With external longitudinal fins providing 3x effective surface area:

U_effective = 387 × 0.85 (fin efficiency) × 3 (area ratio) ≈ 24 W/m²·K (conservative)

Note: Previous versions calculated U = 7.9 W/m²·K assuming 50mm HDPE walls (k=0.4 W/m·K). The final design uses steel-core pipe (Section 5.3), which has 125x better thermal conductivity. The limiting factor is seawater-side natural convection, addressed through external fins.

Required Heat Transfer Area:

Q = U × A × LMTD

A = Q / (U × LMTD)
A = 100,000,000 W / (24 W/m²·K × 18.0 K)
A = 231,500 m²

Pipe Length Required:

For 16 parallel pipes at 500 mm OD:

Circumference per pipe = π × 0.5 = 1.57 m
Total circumference = 16 × 1.57 = 25.1 m
Length = 231,500 / 25.1 = 9,225 m ≈ 9.2 km per direction

Final Design Selection: - 16 parallel pipes, 500 mm diameter (steel-core with HDPE liner/jacket) - Total loop length: 10 km (5 km out, 5 km return) - Heat transfer area: 251,000 m² (provides 8% margin) - External longitudinal fins on seawater-exposed sections


5. Pipe Specifications

5.1 Material Selection

Option Material Pros Cons Selection
A HDPE PE100 Low cost, corrosion-free Lower pressure rating Ocean loop
B Steel (coated) High pressure, proven Corrosion, weight Onshore high-P
C Titanium Corrosion-proof Very expensive Heat exchangers
D Composite Lightweight, strong Limited track record Future option

5.2 HDPE Pipe Specifications (Ocean Loop)

Selected: PE100 SDR 11

Parameter Value Notes
Outer Diameter 1,000 mm DN1000
Wall Thickness 91 mm SDR 11
Inner Diameter 818 mm Flow area
Pressure Rating 16 bar (PN16) At 20°C
Derating at 40°C 10 bar Temperature factor 0.63
Design Pressure 8 bar With safety factor
Density 950 kg/m³ PE100 material
Weight (empty) 270 kg/m Per meter
Weight (filled) 800 kg/m With sCO2 at 700 kg/m³

Issue: HDPE pressure rating insufficient for sCO2 at 80 bar

5.3 Revised Design: Steel Core with HDPE Liner and External Fins

For 80+ bar operation and enhanced heat transfer, use composite finned design:

Layer Material Thickness Function
Inner liner HDPE 10 mm Corrosion barrier, smooth flow
Pressure core Carbon steel (API 5L X52) 25 mm Pressure containment
External fins Carbon steel 3 mm × 50 mm Heat transfer enhancement
Outer coating Fusion-bonded epoxy 0.5 mm Corrosion protection
Pipe OD 500 mm
Fin tip diameter 600 mm

External Fin Configuration: - Type: Longitudinal fins (continuous along pipe length) - Quantity: 8 fins per pipe - Height: 50 mm (extends from pipe surface) - Thickness: 3 mm - Material: Carbon steel, welded to pipe - Surface area enhancement: 3x bare pipe area - Fin efficiency: ~85% (calculated for natural convection)

Pressure Rating:

Hoop stress: σ = P × D / (2 × t)
For P = 100 bar, D = 500 mm, t = 25 mm:
σ = 10 MPa × 500 / (2 × 25) = 100 MPa

Steel yield strength (X52): 360 MPa minimum
Safety factor: 3.6 ✓

Design rationale: Insulation layer removed from original concept. For a cooling system, thermal resistance is counterproductive. External fins address the limiting factor (seawater-side natural convection) while the steel core provides pressure containment.

5.4 Pipe Flow Analysis

Velocity Check:

Flow area = π × (0.818)² / 4 = 0.526 m²
Per pipe (8 parallel): V̇ = 1.59 / 8 = 0.199 m³/s
Velocity = 0.199 / 0.526 = 0.38 m/s

This velocity is low. Optimize with smaller pipes:

Revised: 16 pipes of 500 mm diameter

Parameter Value
Pipes 16 parallel
OD 500 mm
ID 400 mm
Flow area per pipe 0.126 m²
Flow rate per pipe 0.099 m³/s
Velocity 0.79 m/s
Reynolds number 2.5 × 10⁶

Pressure Drop Calculation:

Darcy-Weisbach: ΔP = f × (L/D) × (ρ × v²/2)

For smooth pipe, Re = 2.5×10⁶: f = 0.01
L = 10,000 m, D = 0.4 m, ρ = 600 kg/m³, v = 0.79 m/s

ΔP = 0.01 × (10,000/0.4) × (600 × 0.79²/2)
ΔP = 0.01 × 25,000 × 187
ΔP = 46,750 Pa = 0.47 bar

Acceptable pressure drop.


6. Primary Heat Exchanger Design

6.1 Server-Side Cooling Architecture

Cooling Distribution:

Level Technology Medium Temperature
Chip Cold plates Water/glycol 45°C supply, 55°C return
Rack CDU Water/glycol 40°C supply, 50°C return
Row In-row cooler Water/glycol 35°C supply, 45°C return
Facility Primary HX sCO2 10°C supply, 40°C return

6.2 Primary Heat Exchanger Specifications

Type: Shell and Tube (TEMA BEM)

Parameter Value Notes
Quantity 4 units 25 MW each
Duty 25 MW Per unit
Shell side sCO2 80 bar, 10-40°C
Tube side Water/glycol 2 bar, 35-50°C
LMTD 7.5°C Counter-flow
U-value 2,500 W/m²·K Liquid-liquid
Area 1,333 m² Per unit
Tube OD 19.05 mm ¾"
Tube length 6 m Standard
Tubes per unit 3,700 Calculated
Shell diameter 1.5 m Approximate
Material (tubes) Titanium Gr 2 Corrosion resistance
Material (shell) Carbon steel Pressure containment

6.3 Heat Exchanger Arrangement

    WATER/GLYCOL FROM DATA CENTER
              │ 50°C
    ┌─────────────────────┐
    │   ┌─────────────┐   │
    │   │  TUBES      │   │
    │   │  (Ti Gr 2)  │   │
    │   │             │   │◄── sCO2 IN (10°C)
    │   │    ~~~~     │   │
    │   │    ~~~~     │   │
    │   │    ~~~~     │   │
    │   │             │   │──► sCO2 OUT (40°C)
    │   └─────────────┘   │
    │     SHELL (CS)      │
    └─────────────────────┘
              │ 35°C
    WATER/GLYCOL TO DATA CENTER

7. Pumping System

7.1 Pump Requirements

Hydraulic Calculations:

Parameter Value Notes
Flow rate 1.59 m³/s Total system
Flow rate 5,724 m³/hr Per pump pair
Fluid density 600 kg/m³ Average
Static head 0 m Closed loop
Friction loss (ocean) 0.5 bar Calculated above
Friction loss (onshore) 0.3 bar Estimate
HX pressure drop 0.5 bar Each side
Total head 1.3 bar 13 m equivalent

Pump Power:

P_hydraulic = ρ × g × H × Q
P_hydraulic = 600 × 9.81 × 13 × 1.59
P_hydraulic = 122 kW

At 75% efficiency:
P_shaft = 122 / 0.75 = 163 kW

With motor efficiency 95%:
P_electrical = 163 / 0.95 = 172 kW

Total pumping power: ~200 kW (0.2% of cooling load)

7.2 Pump Specifications

Type: Multistage centrifugal, hermetically sealed

Parameter Value
Quantity 3 (2 duty + 1 standby)
Flow per pump 800 m³/hr
Head 15 bar differential
Suction pressure 80 bar
Discharge pressure 95 bar
Power 100 kW each
Speed Variable (VFD)
Seal type Magnetic drive (sealless)
Material Stainless steel 316L
Design code API 610

7.3 Pump Arrangement

                    ┌──────────┐
    FROM HX ───────►│  PUMP 1  │───┐
                    │  (Duty)  │   │
                    └──────────┘   │
                    ┌──────────┐   │
    FROM HX ───────►│  PUMP 2  │───┼───► TO OCEAN
                    │  (Duty)  │   │
                    └──────────┘   │
                    ┌──────────┐   │
    FROM HX ───────►│  PUMP 3  │───┘
                    │ (Standby)│
                    └──────────┘

8. Ocean Environmental Conditions

8.1 Labrador Current Characteristics

Parameter Value Source
Temperature (annual avg) 2-4°C NL Heritage
Temperature (summer max) 5-6°C Wikipedia
Temperature (winter min) -1 to 0°C Wikipedia
Salinity 31-35 ppt Literature
Current velocity 0.1-0.5 m/s NOAA
Depth (target) 200-400 m Design choice

8.2 Site Selection Criteria

Criterion Requirement Rationale
Water depth 200-500 m Cold water, stable
Distance from shore 3-10 km Balance cost/temperature
Seabed slope <15° Installation feasibility
Sediment type Sand/gravel Stable foundation
Fishing activity Low Avoid conflicts
Shipping lanes Clear Safety
Protected areas None Environmental compliance

8.3 Seasonal Temperature Profile

Month Surface Temp 200m Depth 400m Depth
January -1°C 2°C 3°C
April 0°C 2°C 3°C
July 8°C 3°C 3°C
October 6°C 3°C 3°C
Design Basis - 3°C 3°C

The deep water temperature is remarkably stable year-round, providing consistent cooling capacity.


9. Installation Methodology

9.1 Shore Crossing

Method: Horizontal Directional Drilling (HDD)

Parameter Value
Entry point 200 m inland
Exit point 500 m offshore
Drill length 800 m
Depth below seabed 15-20 m
Conduit diameter 1.5 m
Pipes through conduit 16 × 500 mm

9.2 Offshore Pipe Installation

Method: Towed or floated installation

Sequence: 1. Fabricate pipe strings onshore (500 m sections) 2. Weld/fuse sections on beach or floating barge 3. Attach buoyancy modules 4. Tow pipe string to installation corridor 5. Controlled flood and sink to seabed 6. Position with ROV assistance 7. Connect sections with mechanical connectors 8. Bury in trench (1-2 m depth) or protect with rock dump

Installation Vessels: - Pipe-lay barge or DP vessel - Support tugs (2-3) - ROV support vessel - Survey vessel

9.3 Installation Schedule

Phase Duration Activity
Mobilization 2 weeks Vessel positioning
HDD crossing 4 weeks Shore crossing
Pipe fabrication 8 weeks Onshore welding
Offshore installation 12 weeks Lay and bury
Testing 4 weeks Hydro test, commissioning
Total 30 weeks ~7 months

10. Control System

10.1 Control Philosophy

Primary Control Loop: Temperature-based flow control - Measure: Server return water temperature - Setpoint: 50°C maximum - Output: sCO2 pump speed (VFD)

Secondary Controls: - Pressure maintenance (expansion tank) - Flow balancing (control valves) - Emergency shutdown (ESD)

10.2 Instrumentation

Measurement Location Quantity Type
Temperature Throughout 50 RTD Pt100
Pressure Key points 30 Pressure transmitter
Flow Each pipe 16 Ultrasonic
Level Expansion tanks 4 Radar
Vibration Pumps 6 Accelerometer
Leak detection Ocean pipes Continuous Fiber optic DTS

10.3 Control System Architecture

┌─────────────────────────────────────────────────────────┐
│                    SCADA / HMI                          │
│              (Control Room Display)                     │
└─────────────────────────┬───────────────────────────────┘
                          │ Ethernet
          ┌───────────────┼───────────────┐
          │               │               │
    ┌─────┴─────┐   ┌─────┴─────┐   ┌─────┴─────┐
    │  PLC 1    │   │  PLC 2    │   │  PLC 3    │
    │ (Cooling) │   │ (Pumps)   │   │ (Safety)  │
    └─────┬─────┘   └─────┬─────┘   └─────┬─────┘
          │               │               │
    Field │         Field │         Field │
    I/O   │         I/O   │         I/O   │

11. Safety Systems

11.1 Hazard Identification

Hazard Cause Consequence Mitigation
sCO2 release Pipe rupture Asphyxiation (enclosed) Ventilation, detection
Over-pressure Pump deadhead Pipe burst PRVs, interlocks
Under-pressure Leak Cavitation, air ingress Low-P shutdown
High temperature Loss of cooling Server damage Backup cooling
Seawater ingress Pipe damage Contamination Leak detection

11.2 Safety Instrumented Functions

SIF Description SIL
SIF-001 High pressure shutdown SIL 2
SIF-002 Low pressure shutdown SIL 2
SIF-003 High temperature alarm SIL 1
SIF-004 CO2 leak detection SIL 2
SIF-005 Seismic shutdown SIL 1

11.3 Emergency Scenarios

Scenario 1: Ocean Pipe Leak 1. Fiber optic DTS detects temperature anomaly 2. System isolates affected pipe section 3. Remaining pipes handle reduced load 4. Alert maintenance team 5. ROV inspection within 24 hours

Scenario 2: Total Cooling Loss 1. Server inlet temperature rises 2. At 35°C: Reduce IT load 25% 3. At 40°C: Reduce IT load 50% 4. At 45°C: Graceful server shutdown 5. Backup air cooling maintains UPS/network

Scenario 3: CO2 Release Onshore 1. CO2 detectors trigger at 5,000 ppm 2. Ventilation fans activate 3. Non-essential personnel evacuate 4. System depressurizes to safe level 5. Investigate and repair


12. Reliability and Redundancy

12.1 System Availability Target

Target: 99.999% (Five 9s)

Component Redundancy Availability Notes
Ocean pipes N+4 (16 pipes) 99.9999% Can lose 4 pipes
Primary HX N+1 (4 units) 99.99% Can lose 1 unit
Pumps N+1 (3 units) 99.99% 2 duty, 1 standby
Control system 2oo3 voting 99.999% Triple modular
Power supply N+1 + UPS 99.99% Backup power
System 99.99% ~52 min/year downtime

12.2 Failure Modes and Effects Analysis (FMEA)

Rating Scale: - Severity (S): 1=Negligible, 3=Minor, 5=Moderate, 7=Major, 10=Catastrophic - Occurrence (O): 1=Rare (<1/10yr), 3=Low (⅕yr), 5=Moderate (1/yr), 7=High (1/mo), 10=Frequent - Detection (D): 1=Certain, 3=High, 5=Moderate, 7=Low, 10=None - RPN = S × O × D (Action required if RPN > 100)

12.2.1 Ocean Piping System

ID Failure Mode Cause Effect S O D RPN Mitigation
P-01 External leak (small) Corrosion, fatigue Reduced flow, sCO2 loss 4 2 3 24 DTS monitoring, coating inspection
P-02 External leak (large) Impact, weld failure Pipe isolation required 6 1 2 12 ROV patrol, N+4 redundancy
P-03 Blockage Debris, hydrate formation Reduced flow in one pipe 5 2 4 40 Filters, flow monitoring
P-04 Fin detachment Fatigue, corrosion Reduced heat transfer 4 3 5 60 Weld inspection, thermal monitoring
P-05 Anchor/trawl strike Fishing activity Pipe damage/leak 7 2 3 42 Route marking, burial, exclusion zone
P-06 Seabed movement Seismic, slumping Pipe stress/rupture 8 1 5 40 Route survey, flexible sections

12.2.2 Pumping System

ID Failure Mode Cause Effect S O D RPN Mitigation
M-01 Pump seized Bearing failure Loss of one pump 5 3 2 30 N+1 redundancy, vibration monitoring
M-02 Seal leak Wear, pressure spike sCO2 release to building 7 3 2 42 Magnetic drive (sealless), CO2 detection
M-03 VFD failure Electrical fault Pump trips 4 3 1 12 Redundant VFDs, bypass mode
M-04 Cavitation Low suction pressure Pump damage, noise 5 2 2 20 Pressure interlocks, NPSH margin
M-05 All pumps fail Common mode (power) Total cooling loss 10 1 1 10 UPS, diesel backup, load shedding

12.2.3 Heat Exchangers

ID Failure Mode Cause Effect S O D RPN Mitigation
H-01 Tube leak Corrosion, erosion Water into sCO2 loop 6 2 3 36 Ti tubes, pressure monitoring
H-02 Fouling (tube side) Scale, biofilm Reduced capacity 4 4 3 48 Water treatment, cleaning schedule
H-03 Fouling (shell side) sCO2 contaminants Reduced capacity 3 2 4 24 Filtration, fluid analysis
H-04 Gasket failure Age, thermal cycling External leak 5 3 2 30 Preventive replacement, leak detection
H-05 Tube bundle blockage Debris Flow maldistribution 4 2 4 32 Strainers, ΔP monitoring

12.2.4 Control and Safety Systems

ID Failure Mode Cause Effect S O D RPN Mitigation
C-01 Sensor drift Age, environment Incorrect readings 3 4 3 36 Redundant sensors, calibration
C-02 Control valve stuck Actuator failure Unable to regulate 5 3 2 30 Redundant valves, manual override
C-03 PLC failure Hardware fault Loss of control 6 2 2 24 2oo3 voting, hot standby
C-04 Communication loss Network failure Blind operation 4 3 2 24 Redundant networks, local control
C-05 Safety system spurious trip Sensor fault Unnecessary shutdown 3 3 3 27 2oo3 voting, proof testing
C-06 Safety system fails to trip Common mode Hazardous condition 10 1 2 20 SIL 2 design, regular testing

12.2.5 sCO2 Inventory

ID Failure Mode Cause Effect S O D RPN Mitigation
I-01 Onshore sCO2 release (small) Fitting leak Local CO2 accumulation 5 4 2 40 Ventilation, CO2 detectors
I-02 Onshore sCO2 release (large) Pipe rupture Asphyxiation risk 9 1 2 18 Blow-down valves, emergency ventilation
I-03 Pressure excursion (high) Pump deadhead, blocked Over-pressure 7 2 1 14 PRVs, high-P interlock
I-04 Pressure excursion (low) Major leak, pump fail Loss of sCO2 phase 6 2 1 12 Low-P shutdown, makeup system
I-05 Contamination Water ingress, air Corrosion, hydrates 5 2 4 40 Drying, analysis, filtration

12.2.6 FMEA Summary

Category Highest RPN Critical Items
Piping 60 Fin detachment (thermal monitoring required)
Pumps 42 Seal leak (specify sealless magnetic drive)
Heat Exchangers 48 Fouling (establish cleaning schedule)
Controls 36 Sensor drift (calibration program)
sCO2 Inventory 40 Onshore release (ventilation design critical)

No failure modes exceed RPN 100 with proposed mitigations. Highest risks are fin integrity and fouling - address in detailed design phase.

12.3 Maintenance Strategy

Component Interval Activity
Pumps 6 months Vibration analysis
Pumps 2 years Bearing replacement
Heat exchangers 1 year Inspection
Heat exchangers 3 years Tube cleaning
Ocean pipes 5 years ROV inspection
Control system 1 year Calibration
Safety systems 1 year Proof testing

13. Performance Summary

13.1 Design Point Performance

Parameter Value Units
Cooling capacity 100 MW
sCO2 flow rate 1,111 kg/s
Supply temperature 10 °C
Return temperature 40 °C
Operating pressure 85 bar
Ocean loop length 10 km
Number of pipes 16 -
Pumping power 200 kW
Cooling COP 500 -
PUE contribution 0.002 -

13.2 Seasonal Performance

Season Ocean Temp sCO2 Return Capacity Notes
Winter 2°C 8°C 110% Excess capacity
Spring 3°C 10°C 100% Design point
Summer 4°C 11°C 98% Slight derating
Fall 3°C 10°C 100% Design point

13.3 Comparison to Alternatives

System COP Pumping Power PUE Impact
Air-cooled chiller 4-6 25 MW 0.25
Water-cooled chiller 6-8 18 MW 0.18
Free cooling (Nordic) 15-25 5 MW 0.05
SWAC (seawater) 25-50 3 MW 0.03
Ocean sCO2 500 0.2 MW 0.002

14. Cost Estimate

14.1 Capital Cost Breakdown

Item Cost ($M) Notes
Ocean piping (160 km total) 56.0 Steel-core finned pipe @ $350/m manufactured
Shore crossing (HDD) 4.0 16 conduits, 800m each
Primary heat exchangers 8.0 4 × $2M (titanium tube)
Pumping system 2.5 3 pumps + VFDs
Control and instrumentation 2.5 Complete SCADA + fiber optic DTS
sCO2 inventory 1.5 ~200 tonnes @ $7.50/kg
Civil works 3.5 Foundations, pump building
Engineering and design 8.0 10% of equipment
Marine installation 18.0 Vessels, lay, burial, testing
Commissioning 2.0 Testing and startup
Contingency (20%) 21.0 Risk allowance for novel design
Total 127.0 $1,270/kW cooling

Cost context: At $127M for 100 MW cooling capacity, this represents ~12% of a $1.05B data center build. Conventional chiller plants cost \(50-80M but consume 15-25 MW of electricity annually (~\)9-16M/year at $0.07/kWh). The sCO2 system pays back the premium in 5-8 years through energy savings.

14.2 Operating Cost (Annual)

Item Cost ($M/yr) Notes
Electricity (pumping) 0.12 200 kW × $0.07/kWh × 8760h
Maintenance 2.5 2% of CAPEX
Insurance 1.3 1% of CAPEX
Inspections (ROV) 0.4 Annual subsea inspection
sCO2 makeup 0.1 Minor leakage (~1%/year)
Total OPEX 4.4 $44/kW/yr

Comparison: Conventional chiller OPEX is dominated by electricity ($9-16M/year). The sCO2 system's $4.4M/year OPEX saves $5-12M annually vs chillers.


15. References

Technical Standards

  • TEMA (Tubular Exchanger Manufacturers Association) Standards
  • ASME B31.3 Process Piping
  • API 610 Centrifugal Pumps
  • DNV-OS-F101 Submarine Pipeline Systems
  • ISO 13628 Petroleum and Natural Gas Industries - Subsea Production Systems

Research Papers

  • NIST IR 6496: Heat Transfer of Supercritical CO2
  • DOE/NETL: Supercritical CO2 Technology Program
  • PPI Handbook: Marine Installation of PE Pipe

Data Sources

  • NL Heritage: Cold Ocean Environment
  • NOAA: Labrador Current Characteristics
  • Wikipedia: Labrador Sea, Supercritical CO2

CCNL-TES-2024-01 v1.0