Technical Engineering Specifications¶
Ocean-Based sCO2 Cooling System for 100 MW Data Center¶
Document ID: CCNL-TES-2024-01 | Version: 1.1 | Date: December 2025
1. Executive Summary¶
This document provides detailed engineering specifications for a closed-loop supercritical CO2 (sCO2) ocean cooling system designed to reject 100 MW of thermal load from a hyperscale data center. The system leverages the cold waters of the Labrador Current (2-4°C year-round) to achieve passive heat rejection with minimal pumping energy.
Key Design Parameters: - Thermal capacity: 100 MW (341 MMBTU/hr) - Working fluid: Supercritical CO2 - Operating pressure: 80-100 bar - Ocean loop length: 8-10 km - Target PUE contribution: <0.05 (cooling only)
2. Thermodynamic Fundamentals¶
2.1 Supercritical CO2 Properties¶
Critical Point: - Critical Temperature (Tc): 31.1°C (304.13 K) - Critical Pressure (Pc): 73.8 bar (7.38 MPa) - Critical Density: 467.6 kg/m³
Operating Conditions (Design Point: 80 bar, 35°C):
| Property | Value | Units | Comparison to Water |
|---|---|---|---|
| Density | 450-700 | kg/m³ | 45-70% of water |
| Dynamic Viscosity | 0.03-0.08 | mPa·s | 10-30x lower |
| Thermal Conductivity | 0.05-0.08 | W/m·K | 8-13% of water |
| Specific Heat (Cp) | 2.5-8.0 | kJ/kg·K | Variable near Tc |
| Prandtl Number | 1.5-3.0 | - | Lower than water |
2.2 Heat Transfer Advantage¶
The heat transfer coefficient for sCO2 near the critical point can be 2-3x higher than water due to:
- Low viscosity - Enables higher Reynolds numbers at same flow rate
- Property variation - Cp spikes near pseudo-critical temperature
- Density changes - Drives natural convection enhancement
Nusselt Correlation for sCO2:
Where: - Re = Reynolds number (typically 10^5 - 10^6) - Pr = Prandtl number - ρw/ρb = wall-to-bulk density ratio - n = 0.4 for heating, 0.3 for cooling
Calculated Heat Transfer Coefficients:
| Condition | h (W/m²·K) | Notes |
|---|---|---|
| Water in turbulent flow | 5,000-8,000 | Baseline |
| sCO2 at 80 bar, 35°C | 12,000-18,000 | Near pseudo-critical |
| sCO2 at 100 bar, 25°C | 8,000-12,000 | Subcritical region |
3. System Architecture¶
3.1 Overall System Schematic¶
┌─────────────────────────────────────────────────────────────────┐
│ DATA CENTER (100 MW IT) │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Server │ │ Server │ │ Server │ │ Server │ ... │
│ │ Hall A │ │ Hall B │ │ Hall C │ │ Hall D │ │
│ │ (25 MW) │ │ (25 MW) │ │ (25 MW) │ │ (25 MW) │ │
│ └────┬─────┘ └────┬─────┘ └────┬─────┘ └────┬─────┘ │
│ │ │ │ │ │
│ └─────────────┴──────┬──────┴─────────────┘ │
│ │ │
│ ┌───────┴───────┐ │
│ │ PRIMARY HX │ ← Liquid-to-sCO2 │
│ │ (Titanium) │ │
│ └───────┬───────┘ │
└────────────────────────────┼────────────────────────────────────┘
│
┌──────────────┼──────────────┐
│ │ │
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ PUMP 1 │ │ PUMP 2 │ │ PUMP 3 │ (N+1 Redundancy)
│ (Duty) │ │ (Duty) │ │ (Standby) │
└─────┬─────┘ └─────┬─────┘ └─────┬─────┘
│ │ │
└──────────────┼──────────────┘
│
┌────────┴────────┐
│ MANIFOLD & │
│ CONTROL VALVE │
└────────┬────────┘
│
════════════════════╪════════════════════ SHORE LINE
│
┌────────┴────────┐
│ SHORE CROSSING │
│ (HDD Conduit) │
└────────┬────────┘
│
─────────────────────────┼───────────────────── SEABED
│
┌──────────────┴──────────────┐
│ │
┌─────┴─────┐ ┌─────┴─────┐
│ SUPPLY │ │ RETURN │
│ (Hot) │ │ (Cold) │
│ 35-40°C │ │ 8-12°C │
└─────┬─────┘ └─────┬─────┘
│ │
│ ┌─────────────────┐ │
│ │ │ │
└────┤ OCEAN LOOP ├──────┘
│ (8-10 km) │
│ 2-4°C seawater │
└─────────────────┘
3.2 System Components¶
| Component | Quantity | Function |
|---|---|---|
| Primary Heat Exchangers | 4 | Server liquid to sCO2 |
| sCO2 Circulation Pumps | 3 (2+1) | Drive sCO2 flow |
| Subsea Pipeline (Supply) | 5 km | Hot sCO2 to ocean |
| Subsea Pipeline (Return) | 5 km | Cold sCO2 from ocean |
| Ocean Heat Exchanger | 8-10 km | Heat rejection to seawater |
| Expansion Tank | 2 | Pressure/inventory control |
| Control System | 1 | Automation and monitoring |
4. Thermal Design Calculations¶
4.1 Heat Load Analysis¶
Data Center Thermal Load:
| Parameter | Value | Notes |
|---|---|---|
| IT Load | 100 MW | Servers, storage, network |
| PUE Target | 1.05 | Industry-leading |
| Total Facility Load | 105 MW | IT + overhead |
| Cooling Load | 100 MW | ~95% rejected via sCO2 |
| Auxiliary Cooling | 5 MW | UPS, lighting, etc. (local) |
Heat Balance:
Q_total = Q_servers + Q_storage + Q_network + Q_lighting + Q_UPS
Q_total = 85 MW + 8 MW + 5 MW + 1 MW + 1 MW = 100 MW
Q_cooling = 100 MW = 100,000 kW = 341.2 MMBTU/hr
4.2 sCO2 Flow Rate Calculation¶
Design Conditions: - Inlet temperature (from servers): 40°C - Outlet temperature (from ocean): 10°C - Temperature differential: ΔT = 30°C - Average specific heat: Cp = 3.0 kJ/kg·K (at 85 bar)
Mass Flow Rate:
Volume Flow Rate:
4.3 Ocean Heat Exchanger Sizing¶
Heat Transfer to Seawater:
Design basis: - Seawater temperature: 3°C (annual average) - sCO2 inlet temperature: 40°C - sCO2 outlet temperature: 10°C - Log Mean Temperature Difference (LMTD):
LMTD = (ΔT1 - ΔT2) / ln(ΔT1/ΔT2)
= ((40-3) - (10-3)) / ln(37/7)
= (37 - 7) / ln(5.29)
= 30 / 1.67
= 18.0°C
Overall Heat Transfer Coefficient (U):
For pipe-in-seawater configuration with steel-core finned pipe (see Section 5.3): - sCO2 side: hi = 12,000 W/m²·K - Pipe wall (carbon steel): k = 50 W/m·K, t = 25 mm - External fins: 3x surface area enhancement - Seawater side (natural convection): ho = 500 W/m²·K
Baseline calculation (bare steel pipe):
1/U = 1/hi + t/k + 1/ho
1/U = 1/12,000 + 0.025/50 + 1/500
1/U = 0.000083 + 0.0005 + 0.002
1/U = 0.00258
U_bare = 387 W/m²·K
However, the seawater-side convection (ho = 500 W/m²·K) dominates the thermal resistance. With external longitudinal fins providing 3x effective surface area:
Note: Previous versions calculated U = 7.9 W/m²·K assuming 50mm HDPE walls (k=0.4 W/m·K). The final design uses steel-core pipe (Section 5.3), which has 125x better thermal conductivity. The limiting factor is seawater-side natural convection, addressed through external fins.
Required Heat Transfer Area:
Pipe Length Required:
For 16 parallel pipes at 500 mm OD:
Circumference per pipe = π × 0.5 = 1.57 m
Total circumference = 16 × 1.57 = 25.1 m
Length = 231,500 / 25.1 = 9,225 m ≈ 9.2 km per direction
Final Design Selection: - 16 parallel pipes, 500 mm diameter (steel-core with HDPE liner/jacket) - Total loop length: 10 km (5 km out, 5 km return) - Heat transfer area: 251,000 m² (provides 8% margin) - External longitudinal fins on seawater-exposed sections
5. Pipe Specifications¶
5.1 Material Selection¶
| Option | Material | Pros | Cons | Selection |
|---|---|---|---|---|
| A | HDPE PE100 | Low cost, corrosion-free | Lower pressure rating | Ocean loop |
| B | Steel (coated) | High pressure, proven | Corrosion, weight | Onshore high-P |
| C | Titanium | Corrosion-proof | Very expensive | Heat exchangers |
| D | Composite | Lightweight, strong | Limited track record | Future option |
5.2 HDPE Pipe Specifications (Ocean Loop)¶
Selected: PE100 SDR 11
| Parameter | Value | Notes |
|---|---|---|
| Outer Diameter | 1,000 mm | DN1000 |
| Wall Thickness | 91 mm | SDR 11 |
| Inner Diameter | 818 mm | Flow area |
| Pressure Rating | 16 bar (PN16) | At 20°C |
| Derating at 40°C | 10 bar | Temperature factor 0.63 |
| Design Pressure | 8 bar | With safety factor |
| Density | 950 kg/m³ | PE100 material |
| Weight (empty) | 270 kg/m | Per meter |
| Weight (filled) | 800 kg/m | With sCO2 at 700 kg/m³ |
Issue: HDPE pressure rating insufficient for sCO2 at 80 bar
5.3 Revised Design: Steel Core with HDPE Liner and External Fins¶
For 80+ bar operation and enhanced heat transfer, use composite finned design:
| Layer | Material | Thickness | Function |
|---|---|---|---|
| Inner liner | HDPE | 10 mm | Corrosion barrier, smooth flow |
| Pressure core | Carbon steel (API 5L X52) | 25 mm | Pressure containment |
| External fins | Carbon steel | 3 mm × 50 mm | Heat transfer enhancement |
| Outer coating | Fusion-bonded epoxy | 0.5 mm | Corrosion protection |
| Pipe OD | 500 mm | ||
| Fin tip diameter | 600 mm |
External Fin Configuration: - Type: Longitudinal fins (continuous along pipe length) - Quantity: 8 fins per pipe - Height: 50 mm (extends from pipe surface) - Thickness: 3 mm - Material: Carbon steel, welded to pipe - Surface area enhancement: 3x bare pipe area - Fin efficiency: ~85% (calculated for natural convection)
Pressure Rating:
Hoop stress: σ = P × D / (2 × t)
For P = 100 bar, D = 500 mm, t = 25 mm:
σ = 10 MPa × 500 / (2 × 25) = 100 MPa
Steel yield strength (X52): 360 MPa minimum
Safety factor: 3.6 ✓
Design rationale: Insulation layer removed from original concept. For a cooling system, thermal resistance is counterproductive. External fins address the limiting factor (seawater-side natural convection) while the steel core provides pressure containment.
5.4 Pipe Flow Analysis¶
Velocity Check:
Flow area = π × (0.818)² / 4 = 0.526 m²
Per pipe (8 parallel): V̇ = 1.59 / 8 = 0.199 m³/s
Velocity = 0.199 / 0.526 = 0.38 m/s
This velocity is low. Optimize with smaller pipes:
Revised: 16 pipes of 500 mm diameter
| Parameter | Value |
|---|---|
| Pipes | 16 parallel |
| OD | 500 mm |
| ID | 400 mm |
| Flow area per pipe | 0.126 m² |
| Flow rate per pipe | 0.099 m³/s |
| Velocity | 0.79 m/s |
| Reynolds number | 2.5 × 10⁶ |
Pressure Drop Calculation:
Darcy-Weisbach: ΔP = f × (L/D) × (ρ × v²/2)
For smooth pipe, Re = 2.5×10⁶: f = 0.01
L = 10,000 m, D = 0.4 m, ρ = 600 kg/m³, v = 0.79 m/s
ΔP = 0.01 × (10,000/0.4) × (600 × 0.79²/2)
ΔP = 0.01 × 25,000 × 187
ΔP = 46,750 Pa = 0.47 bar
Acceptable pressure drop.
6. Primary Heat Exchanger Design¶
6.1 Server-Side Cooling Architecture¶
Cooling Distribution:
| Level | Technology | Medium | Temperature |
|---|---|---|---|
| Chip | Cold plates | Water/glycol | 45°C supply, 55°C return |
| Rack | CDU | Water/glycol | 40°C supply, 50°C return |
| Row | In-row cooler | Water/glycol | 35°C supply, 45°C return |
| Facility | Primary HX | sCO2 | 10°C supply, 40°C return |
6.2 Primary Heat Exchanger Specifications¶
Type: Shell and Tube (TEMA BEM)
| Parameter | Value | Notes |
|---|---|---|
| Quantity | 4 units | 25 MW each |
| Duty | 25 MW | Per unit |
| Shell side | sCO2 | 80 bar, 10-40°C |
| Tube side | Water/glycol | 2 bar, 35-50°C |
| LMTD | 7.5°C | Counter-flow |
| U-value | 2,500 W/m²·K | Liquid-liquid |
| Area | 1,333 m² | Per unit |
| Tube OD | 19.05 mm | ¾" |
| Tube length | 6 m | Standard |
| Tubes per unit | 3,700 | Calculated |
| Shell diameter | 1.5 m | Approximate |
| Material (tubes) | Titanium Gr 2 | Corrosion resistance |
| Material (shell) | Carbon steel | Pressure containment |
6.3 Heat Exchanger Arrangement¶
WATER/GLYCOL FROM DATA CENTER
│ 50°C
▼
┌─────────────────────┐
│ ┌─────────────┐ │
│ │ TUBES │ │
│ │ (Ti Gr 2) │ │
│ │ │ │◄── sCO2 IN (10°C)
│ │ ~~~~ │ │
│ │ ~~~~ │ │
│ │ ~~~~ │ │
│ │ │ │──► sCO2 OUT (40°C)
│ └─────────────┘ │
│ SHELL (CS) │
└─────────────────────┘
│ 35°C
▼
WATER/GLYCOL TO DATA CENTER
7. Pumping System¶
7.1 Pump Requirements¶
Hydraulic Calculations:
| Parameter | Value | Notes |
|---|---|---|
| Flow rate | 1.59 m³/s | Total system |
| Flow rate | 5,724 m³/hr | Per pump pair |
| Fluid density | 600 kg/m³ | Average |
| Static head | 0 m | Closed loop |
| Friction loss (ocean) | 0.5 bar | Calculated above |
| Friction loss (onshore) | 0.3 bar | Estimate |
| HX pressure drop | 0.5 bar | Each side |
| Total head | 1.3 bar | 13 m equivalent |
Pump Power:
P_hydraulic = ρ × g × H × Q
P_hydraulic = 600 × 9.81 × 13 × 1.59
P_hydraulic = 122 kW
At 75% efficiency:
P_shaft = 122 / 0.75 = 163 kW
With motor efficiency 95%:
P_electrical = 163 / 0.95 = 172 kW
Total pumping power: ~200 kW (0.2% of cooling load)
7.2 Pump Specifications¶
Type: Multistage centrifugal, hermetically sealed
| Parameter | Value |
|---|---|
| Quantity | 3 (2 duty + 1 standby) |
| Flow per pump | 800 m³/hr |
| Head | 15 bar differential |
| Suction pressure | 80 bar |
| Discharge pressure | 95 bar |
| Power | 100 kW each |
| Speed | Variable (VFD) |
| Seal type | Magnetic drive (sealless) |
| Material | Stainless steel 316L |
| Design code | API 610 |
7.3 Pump Arrangement¶
┌──────────┐
FROM HX ───────►│ PUMP 1 │───┐
│ (Duty) │ │
└──────────┘ │
│
┌──────────┐ │
FROM HX ───────►│ PUMP 2 │───┼───► TO OCEAN
│ (Duty) │ │
└──────────┘ │
│
┌──────────┐ │
FROM HX ───────►│ PUMP 3 │───┘
│ (Standby)│
└──────────┘
8. Ocean Environmental Conditions¶
8.1 Labrador Current Characteristics¶
| Parameter | Value | Source |
|---|---|---|
| Temperature (annual avg) | 2-4°C | NL Heritage |
| Temperature (summer max) | 5-6°C | Wikipedia |
| Temperature (winter min) | -1 to 0°C | Wikipedia |
| Salinity | 31-35 ppt | Literature |
| Current velocity | 0.1-0.5 m/s | NOAA |
| Depth (target) | 200-400 m | Design choice |
8.2 Site Selection Criteria¶
| Criterion | Requirement | Rationale |
|---|---|---|
| Water depth | 200-500 m | Cold water, stable |
| Distance from shore | 3-10 km | Balance cost/temperature |
| Seabed slope | <15° | Installation feasibility |
| Sediment type | Sand/gravel | Stable foundation |
| Fishing activity | Low | Avoid conflicts |
| Shipping lanes | Clear | Safety |
| Protected areas | None | Environmental compliance |
8.3 Seasonal Temperature Profile¶
| Month | Surface Temp | 200m Depth | 400m Depth |
|---|---|---|---|
| January | -1°C | 2°C | 3°C |
| April | 0°C | 2°C | 3°C |
| July | 8°C | 3°C | 3°C |
| October | 6°C | 3°C | 3°C |
| Design Basis | - | 3°C | 3°C |
The deep water temperature is remarkably stable year-round, providing consistent cooling capacity.
9. Installation Methodology¶
9.1 Shore Crossing¶
Method: Horizontal Directional Drilling (HDD)
| Parameter | Value |
|---|---|
| Entry point | 200 m inland |
| Exit point | 500 m offshore |
| Drill length | 800 m |
| Depth below seabed | 15-20 m |
| Conduit diameter | 1.5 m |
| Pipes through conduit | 16 × 500 mm |
9.2 Offshore Pipe Installation¶
Method: Towed or floated installation
Sequence: 1. Fabricate pipe strings onshore (500 m sections) 2. Weld/fuse sections on beach or floating barge 3. Attach buoyancy modules 4. Tow pipe string to installation corridor 5. Controlled flood and sink to seabed 6. Position with ROV assistance 7. Connect sections with mechanical connectors 8. Bury in trench (1-2 m depth) or protect with rock dump
Installation Vessels: - Pipe-lay barge or DP vessel - Support tugs (2-3) - ROV support vessel - Survey vessel
9.3 Installation Schedule¶
| Phase | Duration | Activity |
|---|---|---|
| Mobilization | 2 weeks | Vessel positioning |
| HDD crossing | 4 weeks | Shore crossing |
| Pipe fabrication | 8 weeks | Onshore welding |
| Offshore installation | 12 weeks | Lay and bury |
| Testing | 4 weeks | Hydro test, commissioning |
| Total | 30 weeks | ~7 months |
10. Control System¶
10.1 Control Philosophy¶
Primary Control Loop: Temperature-based flow control - Measure: Server return water temperature - Setpoint: 50°C maximum - Output: sCO2 pump speed (VFD)
Secondary Controls: - Pressure maintenance (expansion tank) - Flow balancing (control valves) - Emergency shutdown (ESD)
10.2 Instrumentation¶
| Measurement | Location | Quantity | Type |
|---|---|---|---|
| Temperature | Throughout | 50 | RTD Pt100 |
| Pressure | Key points | 30 | Pressure transmitter |
| Flow | Each pipe | 16 | Ultrasonic |
| Level | Expansion tanks | 4 | Radar |
| Vibration | Pumps | 6 | Accelerometer |
| Leak detection | Ocean pipes | Continuous | Fiber optic DTS |
10.3 Control System Architecture¶
┌─────────────────────────────────────────────────────────┐
│ SCADA / HMI │
│ (Control Room Display) │
└─────────────────────────┬───────────────────────────────┘
│ Ethernet
┌───────────────┼───────────────┐
│ │ │
┌─────┴─────┐ ┌─────┴─────┐ ┌─────┴─────┐
│ PLC 1 │ │ PLC 2 │ │ PLC 3 │
│ (Cooling) │ │ (Pumps) │ │ (Safety) │
└─────┬─────┘ └─────┬─────┘ └─────┬─────┘
│ │ │
Field │ Field │ Field │
I/O │ I/O │ I/O │
11. Safety Systems¶
11.1 Hazard Identification¶
| Hazard | Cause | Consequence | Mitigation |
|---|---|---|---|
| sCO2 release | Pipe rupture | Asphyxiation (enclosed) | Ventilation, detection |
| Over-pressure | Pump deadhead | Pipe burst | PRVs, interlocks |
| Under-pressure | Leak | Cavitation, air ingress | Low-P shutdown |
| High temperature | Loss of cooling | Server damage | Backup cooling |
| Seawater ingress | Pipe damage | Contamination | Leak detection |
11.2 Safety Instrumented Functions¶
| SIF | Description | SIL |
|---|---|---|
| SIF-001 | High pressure shutdown | SIL 2 |
| SIF-002 | Low pressure shutdown | SIL 2 |
| SIF-003 | High temperature alarm | SIL 1 |
| SIF-004 | CO2 leak detection | SIL 2 |
| SIF-005 | Seismic shutdown | SIL 1 |
11.3 Emergency Scenarios¶
Scenario 1: Ocean Pipe Leak 1. Fiber optic DTS detects temperature anomaly 2. System isolates affected pipe section 3. Remaining pipes handle reduced load 4. Alert maintenance team 5. ROV inspection within 24 hours
Scenario 2: Total Cooling Loss 1. Server inlet temperature rises 2. At 35°C: Reduce IT load 25% 3. At 40°C: Reduce IT load 50% 4. At 45°C: Graceful server shutdown 5. Backup air cooling maintains UPS/network
Scenario 3: CO2 Release Onshore 1. CO2 detectors trigger at 5,000 ppm 2. Ventilation fans activate 3. Non-essential personnel evacuate 4. System depressurizes to safe level 5. Investigate and repair
12. Reliability and Redundancy¶
12.1 System Availability Target¶
Target: 99.999% (Five 9s)
| Component | Redundancy | Availability | Notes |
|---|---|---|---|
| Ocean pipes | N+4 (16 pipes) | 99.9999% | Can lose 4 pipes |
| Primary HX | N+1 (4 units) | 99.99% | Can lose 1 unit |
| Pumps | N+1 (3 units) | 99.99% | 2 duty, 1 standby |
| Control system | 2oo3 voting | 99.999% | Triple modular |
| Power supply | N+1 + UPS | 99.99% | Backup power |
| System | 99.99% | ~52 min/year downtime |
12.2 Failure Modes and Effects Analysis (FMEA)¶
Rating Scale: - Severity (S): 1=Negligible, 3=Minor, 5=Moderate, 7=Major, 10=Catastrophic - Occurrence (O): 1=Rare (<1/10yr), 3=Low (⅕yr), 5=Moderate (1/yr), 7=High (1/mo), 10=Frequent - Detection (D): 1=Certain, 3=High, 5=Moderate, 7=Low, 10=None - RPN = S × O × D (Action required if RPN > 100)
12.2.1 Ocean Piping System¶
| ID | Failure Mode | Cause | Effect | S | O | D | RPN | Mitigation |
|---|---|---|---|---|---|---|---|---|
| P-01 | External leak (small) | Corrosion, fatigue | Reduced flow, sCO2 loss | 4 | 2 | 3 | 24 | DTS monitoring, coating inspection |
| P-02 | External leak (large) | Impact, weld failure | Pipe isolation required | 6 | 1 | 2 | 12 | ROV patrol, N+4 redundancy |
| P-03 | Blockage | Debris, hydrate formation | Reduced flow in one pipe | 5 | 2 | 4 | 40 | Filters, flow monitoring |
| P-04 | Fin detachment | Fatigue, corrosion | Reduced heat transfer | 4 | 3 | 5 | 60 | Weld inspection, thermal monitoring |
| P-05 | Anchor/trawl strike | Fishing activity | Pipe damage/leak | 7 | 2 | 3 | 42 | Route marking, burial, exclusion zone |
| P-06 | Seabed movement | Seismic, slumping | Pipe stress/rupture | 8 | 1 | 5 | 40 | Route survey, flexible sections |
12.2.2 Pumping System¶
| ID | Failure Mode | Cause | Effect | S | O | D | RPN | Mitigation |
|---|---|---|---|---|---|---|---|---|
| M-01 | Pump seized | Bearing failure | Loss of one pump | 5 | 3 | 2 | 30 | N+1 redundancy, vibration monitoring |
| M-02 | Seal leak | Wear, pressure spike | sCO2 release to building | 7 | 3 | 2 | 42 | Magnetic drive (sealless), CO2 detection |
| M-03 | VFD failure | Electrical fault | Pump trips | 4 | 3 | 1 | 12 | Redundant VFDs, bypass mode |
| M-04 | Cavitation | Low suction pressure | Pump damage, noise | 5 | 2 | 2 | 20 | Pressure interlocks, NPSH margin |
| M-05 | All pumps fail | Common mode (power) | Total cooling loss | 10 | 1 | 1 | 10 | UPS, diesel backup, load shedding |
12.2.3 Heat Exchangers¶
| ID | Failure Mode | Cause | Effect | S | O | D | RPN | Mitigation |
|---|---|---|---|---|---|---|---|---|
| H-01 | Tube leak | Corrosion, erosion | Water into sCO2 loop | 6 | 2 | 3 | 36 | Ti tubes, pressure monitoring |
| H-02 | Fouling (tube side) | Scale, biofilm | Reduced capacity | 4 | 4 | 3 | 48 | Water treatment, cleaning schedule |
| H-03 | Fouling (shell side) | sCO2 contaminants | Reduced capacity | 3 | 2 | 4 | 24 | Filtration, fluid analysis |
| H-04 | Gasket failure | Age, thermal cycling | External leak | 5 | 3 | 2 | 30 | Preventive replacement, leak detection |
| H-05 | Tube bundle blockage | Debris | Flow maldistribution | 4 | 2 | 4 | 32 | Strainers, ΔP monitoring |
12.2.4 Control and Safety Systems¶
| ID | Failure Mode | Cause | Effect | S | O | D | RPN | Mitigation |
|---|---|---|---|---|---|---|---|---|
| C-01 | Sensor drift | Age, environment | Incorrect readings | 3 | 4 | 3 | 36 | Redundant sensors, calibration |
| C-02 | Control valve stuck | Actuator failure | Unable to regulate | 5 | 3 | 2 | 30 | Redundant valves, manual override |
| C-03 | PLC failure | Hardware fault | Loss of control | 6 | 2 | 2 | 24 | 2oo3 voting, hot standby |
| C-04 | Communication loss | Network failure | Blind operation | 4 | 3 | 2 | 24 | Redundant networks, local control |
| C-05 | Safety system spurious trip | Sensor fault | Unnecessary shutdown | 3 | 3 | 3 | 27 | 2oo3 voting, proof testing |
| C-06 | Safety system fails to trip | Common mode | Hazardous condition | 10 | 1 | 2 | 20 | SIL 2 design, regular testing |
12.2.5 sCO2 Inventory¶
| ID | Failure Mode | Cause | Effect | S | O | D | RPN | Mitigation |
|---|---|---|---|---|---|---|---|---|
| I-01 | Onshore sCO2 release (small) | Fitting leak | Local CO2 accumulation | 5 | 4 | 2 | 40 | Ventilation, CO2 detectors |
| I-02 | Onshore sCO2 release (large) | Pipe rupture | Asphyxiation risk | 9 | 1 | 2 | 18 | Blow-down valves, emergency ventilation |
| I-03 | Pressure excursion (high) | Pump deadhead, blocked | Over-pressure | 7 | 2 | 1 | 14 | PRVs, high-P interlock |
| I-04 | Pressure excursion (low) | Major leak, pump fail | Loss of sCO2 phase | 6 | 2 | 1 | 12 | Low-P shutdown, makeup system |
| I-05 | Contamination | Water ingress, air | Corrosion, hydrates | 5 | 2 | 4 | 40 | Drying, analysis, filtration |
12.2.6 FMEA Summary¶
| Category | Highest RPN | Critical Items |
|---|---|---|
| Piping | 60 | Fin detachment (thermal monitoring required) |
| Pumps | 42 | Seal leak (specify sealless magnetic drive) |
| Heat Exchangers | 48 | Fouling (establish cleaning schedule) |
| Controls | 36 | Sensor drift (calibration program) |
| sCO2 Inventory | 40 | Onshore release (ventilation design critical) |
No failure modes exceed RPN 100 with proposed mitigations. Highest risks are fin integrity and fouling - address in detailed design phase.
12.3 Maintenance Strategy¶
| Component | Interval | Activity |
|---|---|---|
| Pumps | 6 months | Vibration analysis |
| Pumps | 2 years | Bearing replacement |
| Heat exchangers | 1 year | Inspection |
| Heat exchangers | 3 years | Tube cleaning |
| Ocean pipes | 5 years | ROV inspection |
| Control system | 1 year | Calibration |
| Safety systems | 1 year | Proof testing |
13. Performance Summary¶
13.1 Design Point Performance¶
| Parameter | Value | Units |
|---|---|---|
| Cooling capacity | 100 | MW |
| sCO2 flow rate | 1,111 | kg/s |
| Supply temperature | 10 | °C |
| Return temperature | 40 | °C |
| Operating pressure | 85 | bar |
| Ocean loop length | 10 | km |
| Number of pipes | 16 | - |
| Pumping power | 200 | kW |
| Cooling COP | 500 | - |
| PUE contribution | 0.002 | - |
13.2 Seasonal Performance¶
| Season | Ocean Temp | sCO2 Return | Capacity | Notes |
|---|---|---|---|---|
| Winter | 2°C | 8°C | 110% | Excess capacity |
| Spring | 3°C | 10°C | 100% | Design point |
| Summer | 4°C | 11°C | 98% | Slight derating |
| Fall | 3°C | 10°C | 100% | Design point |
13.3 Comparison to Alternatives¶
| System | COP | Pumping Power | PUE Impact |
|---|---|---|---|
| Air-cooled chiller | 4-6 | 25 MW | 0.25 |
| Water-cooled chiller | 6-8 | 18 MW | 0.18 |
| Free cooling (Nordic) | 15-25 | 5 MW | 0.05 |
| SWAC (seawater) | 25-50 | 3 MW | 0.03 |
| Ocean sCO2 | 500 | 0.2 MW | 0.002 |
14. Cost Estimate¶
14.1 Capital Cost Breakdown¶
| Item | Cost ($M) | Notes |
|---|---|---|
| Ocean piping (160 km total) | 56.0 | Steel-core finned pipe @ $350/m manufactured |
| Shore crossing (HDD) | 4.0 | 16 conduits, 800m each |
| Primary heat exchangers | 8.0 | 4 × $2M (titanium tube) |
| Pumping system | 2.5 | 3 pumps + VFDs |
| Control and instrumentation | 2.5 | Complete SCADA + fiber optic DTS |
| sCO2 inventory | 1.5 | ~200 tonnes @ $7.50/kg |
| Civil works | 3.5 | Foundations, pump building |
| Engineering and design | 8.0 | 10% of equipment |
| Marine installation | 18.0 | Vessels, lay, burial, testing |
| Commissioning | 2.0 | Testing and startup |
| Contingency (20%) | 21.0 | Risk allowance for novel design |
| Total | 127.0 | $1,270/kW cooling |
Cost context: At $127M for 100 MW cooling capacity, this represents ~12% of a $1.05B data center build. Conventional chiller plants cost \(50-80M but consume 15-25 MW of electricity annually (~\)9-16M/year at $0.07/kWh). The sCO2 system pays back the premium in 5-8 years through energy savings.
14.2 Operating Cost (Annual)¶
| Item | Cost ($M/yr) | Notes |
|---|---|---|
| Electricity (pumping) | 0.12 | 200 kW × $0.07/kWh × 8760h |
| Maintenance | 2.5 | 2% of CAPEX |
| Insurance | 1.3 | 1% of CAPEX |
| Inspections (ROV) | 0.4 | Annual subsea inspection |
| sCO2 makeup | 0.1 | Minor leakage (~1%/year) |
| Total OPEX | 4.4 | $44/kW/yr |
Comparison: Conventional chiller OPEX is dominated by electricity ($9-16M/year). The sCO2 system's $4.4M/year OPEX saves $5-12M annually vs chillers.
15. References¶
Technical Standards¶
- TEMA (Tubular Exchanger Manufacturers Association) Standards
- ASME B31.3 Process Piping
- API 610 Centrifugal Pumps
- DNV-OS-F101 Submarine Pipeline Systems
- ISO 13628 Petroleum and Natural Gas Industries - Subsea Production Systems
Research Papers¶
- NIST IR 6496: Heat Transfer of Supercritical CO2
- DOE/NETL: Supercritical CO2 Technology Program
- PPI Handbook: Marine Installation of PE Pipe
Data Sources¶
- NL Heritage: Cold Ocean Environment
- NOAA: Labrador Current Characteristics
- Wikipedia: Labrador Sea, Supercritical CO2
CCNL-TES-2024-01 v1.0